lunes, 30 de mayo de 2016

energía geotérmica

La energía geotérmica es la que produce el calor interno de la Tierra y que se ha concentrado en el subsuelo en lugares conocidos como reser
reservas geotermales, que si son bien manejados, pueden producir energía limpia de forma indefinida.

¿

La corteza terrestre no es lisa, está dividida en ocho grandes placas y más de 20 placas más pequeñas que se mueven y empujan unas a otras lentamente, a unos 5 a 10 centímetros al año, que es más o menos a la misma velocidad con que crecen tus uñas.
Cuando las placas se juntan, una puede deslizarse bajo la otra, permitiendo la generación de magma que, en ocasiones, puede llegar a la superficie generando volcanes. En la mayoría de los casos, el magma no sale al exterior, pero es capaz de calentar grandes zonas subterráneas.
Esta fuente de calor, el magma, es uno de los principales elementos de un sistema geotermal, pero hacen falta dos más para generar un reservorio: un acuífero y un sello. El acuífero es una formación rocosa permeable, es decir, que permite que el agua u otros fluidos las traspasen. Y el sello, es otra capa de rocas, pero impermeable. Estos tres elementos deben ir montados uno sobre el otro, la fuente de calor, encima el acuífero y sobre ellos, la tapa. Es como una olla a presión.
Entonces, imagina esto. Llueve. El agua se desliza por la superficie terrestre y penetra hacia el subsuelo a través de las fallas y rocas fracturadas, que funcionan como verdaderas cañerías. El agua queda atrapada en los acuíferos, por donde va circulando y calentándose, pero no puede salir al exterior en su totalidad, porque está cubierta por una capa de roca impermeable que le impide su paso. Cuando estas condiciones se dan, estamos frente a un reservorio geotermal.
Los geiseres y las aguas termales son algunos ejemplos de lo que sucede cuando parte de estas aguas calientes o vapor salen a la superficie. Al igual que en nuestra olla, es posible que parte del vapor se escape de la tapa, aunque a temperaturas muchísimo más altas, superior a los 150°C, y eso los convierte en una enorme fuente de energía.
En algunas ocasiones, no existen fuentes de agua natural (como lluvia o nieve) para generar este circuito. En ese caso, se puede inyectar el agua de forma artificial, y el fenómeno que se producirá es el mismo.

¿Cómo se aprovecha esta energía?

Usos geotermia

La energía geotérmica se puede usar de forma directa, para calefacción de hogares, temperar invernaderos y criaderos de peces, deshidratar vegetales, secar madera, entre otras aplicaciones. Esta energía también puede usarse de forma indirecta, para producir electricidad. Generalmente, la fuerza que genera el vapor se aprovecha para impulsar una turbina capaz de mover un generador eléctrico.

¿Dónde se puede explotar?

En lugares volcanicos como las islas 
canarias, Japón, Italia, Islandia...





Puedes ver este video:

turbinas

La turbina hidráulica es una turbomáquina motora, y por tanto esencialmente es una bomba rotodinámica que trabaja a la inversa. Así como una bomba absorbe energía mecánica y restituye energía al fluido; una turbina absorbe energía del fluido y restituye energía mecánica.

En este tipo de turbinas Pelton el numero de chorros por rueda se reduce generalmente a uno o dos, por resultar complicada la instalación en un plano vertical de las tuberías de alimentación y las agujas de inyección. Este sistema de montaje encuentra aplicación en aquellos casos donde se tienen aguas sucias que producen deterioros o notable acción abrasiva. Con el eje horizontal se hace también posible instalar turbinas gemelas para un solo generador colocado entre ambas, contrarrestando empujes axiales.








energía nuclear



El mineral del uranio contiene tres isótopos: U-238 (9928%), U-235 (0,71%) y U-234 (menos que el 0,01%). Dado que el U-235 se encuentra en una pequeña proporción, el mineral debe ser enriquecido (purificado y refinado), hasta aumentar la concentración de U-235 a un 3%, haciéndolo así útil para la reacción.




La energía nuclear es la energía que se obtiene al manipular la estructura interna de los átomos. Se puede obtener mediante la división del núcleo (fisión nuclear) o la unión de dos átomos (fusión nuclear).
La energía nuclear se utiliza principalmente para producir energía eléctricaGeneralmente, esta energía (que se obtiene en forma de calor) se aprovecha para generar energía eléctrica en las centrales nucleares, aunque existen muchas otras aplicaciones de la energía nuclear.
En 1956 se puso en marcha, en Inglaterra, la primera planta nuclear generadora de electricidad para uso comercial. En 1990 había 420 reactores nucleares comerciales en 25 países que producían el 17% de la electricidad del mundo.
En los años cincuenta y sesenta esta forma de generar energía fue acogida con entusiasmo, dado el poco combustible que consumía (con un solo kilo de uranio se podía producir tanta energía como con 1000 toneladas de carbón). Pero ya en la década de los 70 y especialmente en la de los 80 cada vez hubo más voces que alertaron sobre los peligros de la radiación, sobre todo en caso de accidentes. El riesgo de accidente grave en una central nuclear bien construida y manejada es muy bajo, pero algunos de estos accidentes, especialmente el de Chernobyl (1986) que sucedió en una central de la URSS construida con muy deficientes medidas de seguridad y sometida a unos riesgos de funcionamiento alocados, han hecho que en muchos países la opinión pública mayoritariamente se haya opuesto a la continuación o ampliación de los programas nucleares. Además ha surgido otro problema de difícil solución: el del almacenamiento de los residuos nucleares de alta actividad. 
Figura 7-5 > Esquema del funcionamiento de una central nuclearEnergía de fisión nuclear


El sistema más usado para generar energía nuclear utiliza el uranio como combustible. En concreto se usa el isótopo 235 del uranio que es sometido a fisión nuclear en los reactores. En este proceso el núcleo del átomo de uranio (U-235) es bombardeado por neutrones y se rompe originándose dos átomos de un tamaño aproximadamente mitad del de uranio y liberándose dos o tres neutrones que inciden sobre átomos de U-235 vecinos, que vuelven a romperse, originándose una reacción en cadena.
La fisión controlada del U-235 libera una gran cantidad de energía que se usa en la planta nuclear para convertir agua en vapor.
mueve una turbina que genera electricidad.
El mineral de uranio se encuentra en la naturaleza en cantidades limitadas. Es por tanto un recurso no renovable. Suele hallarse casi siempre junto a rocas sedimentarias. Hay depósitos importantes de este mineral en Norteamérica (27,4% de las reservas mundiales), Africa (33%) y Australia (22,5%). 


energía de fusión

Cuando dos núcleos atómicos (por ejemplo de hidrógeno) se unen para formar uno mayor (por ejemplo helio) se produce una reacción nuclear de fusión. Este tipo de reacciones son las que se están produciendo en el sol y en el resto de las estrellas, emitiendo gigantescas cantidades de energía.
Muchas personas que apoyan la energía nuclear ven en este proceso la solución al problema de la energía, pues el combustible que requiere es el hidrógeno, que es muy abundante. Además es un proceso que, en principio, produce muy escasa contaminación radiactiva.
La principal dificultad es que estas reacciones son muy dificiles de controlar porque se necesitan temperaturas de decenas de millones de grados centígrados para inducir la fusión y todavía, a pesar de que se está investigando con mucho interés, no hay reactores de fusión trabajando en ningún sitio. 



Fisión nuclear del plutonio.

El Uranio 238, que es el principal componente del mineral uranio y además es un subproducto de la fisión del U-235, puede ser convertido en Plutonio, Pu-239, un isótopo artificial que es fisionable y se puede usar como combustible. De esta forma se multiplica por mucho la capacidad de obtener energía del uranio. Por ejemplo, si el U-238 almacenado en los cementerios nucleares de los Estados Unidos se convirtiera en plutonio, podría suministrar toda la electricidad que ese país va a necesitar en los próximos 100 años.Pero la tecnología necesaria para este proceso tiene muchos riesgos y problemas, lo que hace que en este momento esté muy poco extendido su uso. Además, el Plutonio no se usa solo para la obtención de energía por fisión nuclear, sino que también es el material con el que se fabrican las armas nucleares, y muchos países instalarían plantas de obtención de plutonio, no para usarlo como combustible, sino, sobre todo, para fabricar armas nucleares, con el riesgo que supone la multiplicación de este tipo de armas.



dínamo

Dínamo

dínamos



Una dínamo es un generador eléctrico que transforma la energía mecánica en energía eléctrica, debido a la rotación de cuerpos conductores en un campo magnético. El término "dínamo" es usado especialmente para referirse a generadores de los que se obtiene corriente continua.

-Funcionamiento: una dínamo está compuesta principalmente por una bobina e imanes. Cuando la bobina gira influenciada por el campo magnético de los imanes, se induce en esta una corriente eléctrica que se conduce al exterior mediante unas escobillas.

-Evolución: gracias al descubrimiento de la inducción electromagnética en 1831 por Michael Faraday , a su trabajo y experimentos, como el precursor de la dínamo, conocido como "disco de Faraday", se pudo diseñar la primera dinamo en 1832, atribuida al fabricante de herramientas Hipólito Pixii. 

Posteriormente, Antonio Pacinotti en 1860 y Zénobe Gramme en 1870 desarrollaron las dinamos anteriores, creando dínamos más eficientes. Después, se creó el alternador(corriente alterna), que fueron sustituyendo a la dinamo.

-Aplicaciones: las aplicaciones de la dínamo son múltiples, sus primeros usos fueron la instalación en bicicletas para proporcionar energía y poder alumbrar. En la actualidad, las usamos principalmente en los automóviles y en algunos aparatos domésticos, pero su mayor utilidad es su aplicación a las energías renovables. En la obtención de la energía eólica, el viento mueve las aspas conectadas al eje de la dínamo, produciendo electricidad. El mismo principio es usado en la obtención de la energía hidráulica.(ver entrada "turbinas")





paneles fotovoltaicos







paneles fotovoltaicos


Los paneles solares fotovoltaicos se componen de celdas que convierten la luz en electricidad. Dichas celdas se aprovechan del efecto fotovoltaico, mediante el cual la energía luminosa produce cargas positivas y negativas en dos semiconductos próximos de distinto tipo, por lo que se produce un campo eléctrico con la capacidad de generar corriente. Los paneles solares fotovoltaicos también pueden ser usados en vehículos solares. 



Los paneles solares son sin duda uno de los mejores inventos modernos, además de ser, probablemente, el invento que más contribuye a la ecología. Los paneles solares son módulos que usan la energía que proviene de la radiación solar, y hay de varios tipos, como los de uso doméstico que producen agua caliente o los paneles solares fotovoltaicos que producen electricidad.




Los paneles fotovoltaicos se dividen en:
Cristalinas y Mono cristalinas: se componen de secciones de un único cristal de silicio (Si) (reconocibles por su forma circular u octogonal, donde los 4 lados cortos, si se puede apreciar en la imagen, se aprecia que son curvos, debido a que es una célula circular recortada).Poli cristalinas: cuando están formadas por pequeñas partículas cristalizadas.Amorfas: cuando el silicio no se ha cristalizado.
Su efectividad es mayor cuanto mayores son los cristales, pero también su peso, grosor y coste. El rendimiento de las primeras puede alcanzar el 20% mientras que el de las últimas puede no llegar al 10%, sin embargo su coste y peso es muy inferior.
El coste de los paneles fotovoltaicos se ha reducido de forma constante desde que se fabricaron las primeras células solares comerciales y su coste medio de generación eléctrica ya es competitivo con las fuentes de energía convencionales en un creciente número de regiones geográficas, alcanzando la paridad de red.
El efecto fotovoltaico fue reconocido por primera vez en 1839 por el físico francés Becquerel, pero la primera célula solar no se construyó hasta 1883. Su autor fue Charles Fritts, quien recubrió una muestra de selenio semiconductor con un pan de oro para formar el empalme. Este primitivo dispositivo presentaba una eficiencia de sólo un 1%. En 1905 Albert Einstein dio la explicación teórica del efecto fotoeléctrico. Russell Ohl patentó la célula solar moderna en el año 1946, aunque Sven Ason Berglund había patentado, con anterioridad, un método que trataba de incrementar la capacidad de las células fotosensibles. Principios teóricos de funcionamiento. Explicación simplificada. Algunos de los fotones, que provienen de la radiación solar, impactan sobre la primera superficie del panel, penetrando en este y siendo absorbidos por materiales semiconductores, tales como el silicio o el arseniuro de galio. Los electrones, subpartículas atómicas que forman parte del exterior de los átomos, y que se alojan en orbitales de energía cuantizada, son golpeados por los fotones (interaccionan) liberándose de los átomos a los que estaban originalmente confinados. Esto les permite, posteriormente, circular a través del material y producir electricidad. Las cargas positivas complementarias que se crean en los átomos que pierden los electrones, (parecidas a burbujas de carga positiva) se denominan huecos y fluyen en el sentido opuesto al de los electrones, en el panel solar. Se ha de comentar que, así como el flujo de electrones corresponde a cargas reales, es decir, cargas que están asociadas a desplazamiento real de masa, los huecos, en realidad, son cargas que se pueden considerar virtuales puesto que no implican desplazamiento de masa real. 







lunes, 25 de abril de 2016

centrales hidroeléctricas


Una central hidroeléctrica es una instalación que permite aprovechar las masas de agua en movimiento que circulan por los ríos para transformarlas en energía eléctrica, utilizando turbinas acopladas a los alternadores . Las centrales hidroeléctricas producen energía eléctrica a partir de la energía potencial o gravitatoria (masa a una cierta altura) contenida en el agua de los ríos,mediante equipo turbina-generador.
Las centrales hidroeléctricas producen energía eléctrica a partir de la energía potencial o gravitatoria (masa a una cierta altura) contenida en el agua de los ríos,mediante equipo turbina-generador. Así es una central:


Esquema central hidroeléctrica

La presa (2), situada en el lecho de un río, acumula artificialmente un volumen de agua para formar un embalse (1), lo que permite que el agua adquiera una energía potencial (masa a una cierta altura) que luego se transformará en electricidad. Para ello, se sitúa en el paramento aguas arriba de la presa,o en sus proximidades,una toma de agua protegida por una rejilla metálica (3) con una válvula que permite controlar la entrada del agua en la galería de presión, previa a una tubería forzada (4) que conduce finalmente el agua hasta la turbina situada en la sala de máquinas de la central.El agua a presión de la tubería forzada va transformando su energía potencial en cinética, es decir,va perdiendo altura y adquiriendo velocidad.Al llegar a las máquinas,actúa sobre los álabes de la turbina hidráulica (5), transformando su energía cinética en energía mecánica de rotación. El eje de la turbina está unido al del generador eléctrico (6) que, al girar, convierte la energía rotatoria en corriente alterna de media tensión y alta intensidad. Mediante transformadores (7),es convertida en corriente de baja intensidad y alta tensión, para ser enviada a la red general mediante las líneas de transporte (8).Una vez que ha cedido su energía, el agua es restituida al río, corriente abajo de la central, a través del canal de desagüe.
Este tipo de energía lleva años explotándose. Los agricultores, desde la Grecia antigua han utilizado molinos de agua para moler trigo y hacer harina. Las centrales hidroeléctricas generan entre 1MW y 10 MW. Es decir, que producen muchísima mas electricidad que los aero generadores o placas fotovoltáicas.
Sin embargo, la construcción de presas en los ríos puede destruir o afectar a la flora y la fauna y otros recursos naturales. Algunos peces, como el salmón, podrían encontrarse con la imposibilidad de nadar río arriba para desovar. Las últimas tecnologías, como las escaleras de peces, ayudan a los salmones a pasar por encima de las presas y a entrar en zonas de desove a contracorriente, pero la presencia de las presas hidroeléctricas cambia sus patrones migratorios y perjudica a las poblaciones de peces. Las centrales hidroeléctricas también pueden provocar la disminución de los niveles de oxígeno disuelto en el agua, lo que resulta dañino para los hábitats fluviales

Esta es la presa de Aldeadávila, Salamanca.


centrales eólicas

La energía eólica es la energía obtenida a partir del viento, es decir, la energía cinética generada por efecto de las corrientes de aire, y que es convertida en otras formas útiles de energía para las actividades humanas. En la actualidad, la energía eólica es utilizada principalmente para producir electricidad mediante aerogeneradores conectados a las grandes redes de distribución de energía eléctrica. Los generadores eólicos consisten en un cable enrollado a un potente imán que gira gracias a la fuerza del viento. Los parques eólicos construidos en tierra suponen una fuente de energía cada vez más barata y competitiva, e incluso más barata en muchas regiones que otras fuentes de energía convencionales. Pequeñas instalaciones eólicas. 
La energía eólica es un recurso abundante, renovable y limpio que ayuda a disminuir las emisiones de gases de efecto invernadero al reemplazar fuentes de energía a base de combustibles fósiles. El impacto ambiental de este tipo de energía es además, generalmente, menos problemático que el de otras fuentes de energía. La energía del viento es bastante estable y predecible a escala anual, aunque presenta variaciones significativas a escalas de tiempo menores. Al incrementarse la proporción de energía eólica producida en una determinada región o país, se hace imprescindible establecer una serie de mejoras en la red eléctrica local.8 9 Diversas técnicas de control energético, como una mayor capacidad de almacenamiento de energía, una distribución geográfica amplia de los aerogeneradores, la disponibilidad de fuentes de energía de respaldo, la posibilidad de exportar o importar energía a regiones vecinas o la reducción de la demanda cuando la producción eólica es menor, pueden ayudar a mitigar en gran medida estos problemas.10 adicionalmente, la predicción meteorológica permite a los gestores de la red eléctrica estar preparados frente a las previsibles variaciones en la producción eólica que puedan tener lugar a corto plazo.
Resultado de imagen de aerogeneradores

lunes, 11 de abril de 2016

LA HISTORIA DE LA AVIACIÓN 2º parte

La Segunda Guerra Mundial se caracterizó por un drástico crecimiento en la producción de aviones, y por el gran desarrollo de la tecnología relacionada con la aviación.

Aviones de enlace

LA ACTUALIDAD

Los aviones de fuselaje ancho son aviones comerciales que poseen tres filas de asientos separadas por dos pasillos. Se crearon para proporcionar más comodidad a los pasajeros, y facilitar su movilidad y la de los tripulantes por el avión.

El primer avión que poseía un fuselaje ancho fue el Boeing 747, apodado Jumbo, capaz de transportar a más de 500 pasajeros en un único vuelo. Fue presentado en 1968.

El concorde era un avión supersónico que alcanzaba 3 veces la velocidad del sonido. Pero tuvo un accidente y lo quitaron del mercado.El 27 de abril de 2005, el Airbus A 380 voló por primera vez,  y el 25 de octubre de 2007, con la realización de su primer vuelo comercial entre Singapur y Sídney, se convirtió en el mayor avión comercial de pasajeros del mundo, superando al Boeing 747, que había ostentado ese récord desde que realizó su primer vuelo en 1969. Pero aun así, el A 380 es superado en tamaño por el Antonov An-225, que realizó su primer vuelo el 21 de diciembre de 1988, y desde entonces es el mayor avión de la historia.
EL FUTURO




Desde el comienzo de la década de 1990, la aviación comercial pasó a desarrollar tecnologías que en el futuro convertirán al avión en un aparato cada vez más automatizado, reduciendo gradualmente la importancia del piloto en las operaciones de la aeronave, con la intención de reducir los accidentes aéreos causados por fallos humanos. Los fabricantes de aviones comerciales continúan investigando posibles maneras de mejorarlos, convirtiéndolos en aparatos cada vez más seguros, eficientes y silenciosos. Al mismo tiempo, los pilotos, controladores aéreos y mecánicos cada vez estarán mejor preparados y las aeronaves pasarán unas revisiones más rigurosas con el fin de evitar accidentes por fallos humanos o mecánicos. Hay varios modelos que se encuentran en fase de pruebas, como el Space Ship One,También se están investigando nuevas fuentes de energía más limpias, como el etanolelectricidad, o incluso empleando energía solar fotovoltáica. Con esta última, la NASA creó el Helios, un avión alimentado gracias a la energía que le proporciona el sol y sus células fotovoltaicas instaladas en toda su superficie alar. El Helios batió el récord de altura en ese tipo de aparatos, y también es capaz de mantenerse durante días en vuelo, lo que hace que en un futuro, aviones similares puedan ser empleados como satélites más económicos. Otras iniciativas privadas, como el avión Solar Impulse se han venido desarrollando en los últimos años, augurando el próximo despegue de la aviación solar.



HISTORIA DE LA AVIACION 1º parte


La historia de la aviación se remonta al día en el que el hombre prehistórico se paró a observar el vuelo de las aves y de otros animales voladores. El deseo de volar está presente en la humanidad desde hace siglos, y a lo largo de la historia del ser humano hay constancia de intentos de volar que han acabado mal. Algunos intentaron volar imitando a los pájaros, usando un par de alas elaboradas con un esqueleto de madera y plumas, que colocaban en los brazos y las balanceaban sin llegar a lograr el resultado esperado.


 El 17 de diciembre de 1903 los hermanos Wright se convirtieron en los primeros en realizar un vuelo en un avión controlado, no obstante algunos afirman que ese honor le corresponde a Alberto Santos Dumont, que realizó su vuelo el 13 de septiembre. A partir de entonces, las mejoras se fueron sucediendo, y cada vez se lograban mejoras sustanciales que ayudaron a desarrollar la aviación hasta tal y como la conocemos en la actualidad. Los aviones han tenido papeles muy importantes en las guerras.

lunes, 15 de febrero de 2016




Airbus A380




El Airbus A 380 es un avión que me gusta mucho por su forma y su gran tamaño. Este avión tiene dos pisos, una longitud de 73 m y una envergadura de 80 m. Su velocidad alcanza los 1.020 km / h pero no suele ir a mas de 945 km / h . Se construyó en Blagnac, Francia.
Además puede recorrer 15.700 m sin repostar. Este gigantesco avión es muy moderno, ya que hizo su primer vuelo el día veintisiete de abril del 2005. 
Ahora trabaja con muchas compañías distintas, pero los usuarios principales son: Qantas, fly emirates, lufthansa, singapure airlines y british airways.